The inositol-1,4,5-trisphosphate system is involved in rapid effects of aldosterone in human mononuclear leukocytes.

نویسندگان

  • M Christ
  • C Eisen
  • J Aktas
  • K Theisen
  • M Wehling
چکیده

There is increasing evidence for rapid steroid action on electrolyte transport in human mononuclear leukocytes (HML). In HML, aldosterone stimulates the Na+/H+ antiporter within a few minutes. Because a variety of hormones and growth factors activate the Na+/H+ antiporter via protein kinase C and inositol phospholipids, a possible involvement of inositol-1,4,5-trisphosphate (IP3) in the rapid effects of aldosterone in HML was investigated. The stimulation of IP3 generation was started by the addition of aldosterone, concanavalin A, or other steroids. A significant increase in IP3 levels by aldosterone (1 nmol/L, P < 0.05) was found after 1 min, similar to that found after concanavalin A (25 micrograms/mL). Aldosterone caused a concentration-dependent elevation of IP3 levels, with an apparent EC50 of approximately 0.1 nmol/L. Fludrocortisone stimulated IP3 generation at similar concentrations, whereas a weaker IP3 stimulation by glucocorticoids (hydrocortisone, dexamethasone) occurred at micromolar concentrations only. Canrenone, a potent inhibitor of classical aldosterone action, was not effective up to a concentration of 100 nmol/L. These findings show kinetic and pharmacological similarities with both the functional data on Na+/H+ antiport stimulation by aldosterone and the studies of 125I-aldosterone binding to plasma membranes of HML. Thus, these data are the first to indicate an involvement of the phosphoinositide pathway in the rapid membrane effects of aldosterone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolism of inositol 1,3,4,5-tetrakisphosphate by human erythrocyte membranes. A new mechanism for the formation of inositol 1,4,5-trisphosphate.

Human erythrocyte membranes metabolize inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] to inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] in the presence of Mg2+. In the absence of Mg2+ a less rapid conversion of Ins(1,3,4,5)P4 into Ins(1,4,5)P3 was revealed. Such an enzyme activity, if present in hormonally sensitive cells, could provide a mechanism for maintaining constant concentrations of I...

متن کامل

Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices.

Carbachol stimulation of muscarinic receptors in rat cortical slices prelabelled with myo-[2-3H]inositol caused the rapid formation of a novel inositol polyphosphate. Evidence derived from its chromatographic behaviour, and from the structure of the products formed in partial dephosphorylation experiments, suggests that it is probably D-myo-inositol 1,3,4,5-tetrakisphosphate. An enzyme in human...

متن کامل

Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands.

A complete separation of myo-inositol 1,4,5-[4,5-(32)P]trisphosphate prepared from human erythrocytes, and myo-[2-3H]inositol 1,3,4-trisphosphate prepared from carbachol-stimulated rat parotid glands [Irvine, Letcher, Lander & Downes (1984) Biochem. J. 223, 237-243], was achieved by anion-exchange high-performance liquid chromatography. This separation technique was then used to study the metab...

متن کامل

Stereospecific inositol 1,4,5-[32P]trisphosphate binding to isolated rat liver nuclei: evidence for inositol trisphosphate receptor-mediated calcium release from the nucleus.

It is well known that inositol 1,4,5-trisphosphate binding and release of calcium are mediated by the same protein. Several reports have indicated the location of the inositol 1,4,5-trisphosphate receptor in organelles other than endoplasmic reticulum. Immunocytochemical studies on the subcellular localization of 1,4,5-trisphosphate receptor in the Purkinje cells from two laboratories have give...

متن کامل

Biochemical and functional responses stimulated by platelet-activating factor in murine peritoneal macrophages [published erratum appears in J Cell Biol 1988 Sep;107(3):following 1260]

Platelet-activating factor (PAF) is a potent stimulant of leukocytes, including macrophages. To analyze the mechanisms of its effects upon macrophages, we determined whether macrophages bear specific surface receptors for PAF. By competitive radioactive binding assays, we determined two classes of specific receptors to be present on purified membranes derived from murine peritoneal macrophages ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical endocrinology and metabolism

دوره 77 6  شماره 

صفحات  -

تاریخ انتشار 1993